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ABSTRACT
We present PVSeRF, a learning framework that reconstructs neu-
ral radiance fields from single-view RGB images, for novel view
synthesis. Previous solutions, such as pixelNeRF [71], rely only on
pixel-aligned features and suffer from feature ambiguity issues. As
a result, they struggle with the disentanglement of geometry and
appearance, leading to implausible geometries and blurry results.
To address this challenge, we propose to incorporate explicit ge-
ometry reasoning and combine it with pixel-aligned features for
radiance field prediction. Specifically, in addition to pixel-aligned
features, we further constrain the radiance field learning to be condi-
tioned on i) voxel-aligned features learned from a coarse volumetric
grid and ii) fine surface-aligned features extracted from a regressed
point cloud. We show that the introduction of such geometry-aware
features helps to achieve a better disentanglement between appear-
ance and geometry, i.e. recovering more accurate geometries and
synthesizing higher quality images of novel views. Extensive exper-
iments against state-of-the-art methods on ShapeNet benchmarks
demonstrate the superiority of our approach for single-image novel
view synthesis.
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1 INTRODUCTION
Novel view synthesis is a long-standing problem in computer vision
and graphics, which plays a crucial role in various practical appli-
cations, including gaming, movie production, and virtual/augment
reality. Recently, it has made great strides thanks to the advances
in differentiable neural rendering [38, 69], especially the neural
radiance fields (NeRF) [32] that simplifies novel view synthesis to
an optimization problem over a dense set of ground truth views.
Although achieving impressive results, the vanilla NeRF suffers
from several limitations: i) the dense views it strictly requires are
not always available; ii) it is slow in inference due to the long op-
timization process; iii) each NeRF is dedicated to a specific scene
and cannot be generalized to new ones.

To address these issues, follow-up works such as pixelNeRF [71],
IBRNet [60], and GRF [57], proposed to predict neural radiance
fields in a feed-forward manner. Taking pixelNeRF as an example,
it tackles the shortcomings of NeRF by extending its network to
be conditioned on scene priors learnt by a convolutional image
encoder. These scene priors are represented by spatial feature maps
that allow the mapping from a pair of query spatial point and
viewing direction to their corresponding pixel-aligned features. In
pixelNeRF, such a mapping is implemented by standard camera
projection and bilinear interpolation. During inference, the scene
priors are obtained via a forward pass through the image encoder
and thus allow fast novel view synthesis from a single input view of
diverse scenes. Although effective, pixelNeRF suffers from feature
ambiguity issues that originates from the many-to-one mapping
between queries and their corresponding pixel-aligned features.
In other words, pixelNeRF naively assigns the same pixel-aligned
features to different points in some novel view as long as these
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(a) (b) (c)

Figure 1: Novel view synthesis from a single image. (a) In-
put image. (b) Novel view synthesis results: pixelNeRF [71]
(top) and Ours (bottom). (c) Surface meshes extracted from
predicted radiance fields: pixelNeRF [71] (top) andOurs (bot-
tom). By augmenting the 2D pixel-aligned features with
complementary 3D geometric features for radiance field pre-
diction, we can synthesize higher quality of novel views.
A by-product of our approach is a cleaner implicit surface
mesh, due to the introduction of explicit geometric features.

points overlap with each other in the input view, which can cause
confusion (Fig. 2).

To clarify such ambiguity issues, we propose to incorporate
explicit geometry reasoning and combine it with pixel-aligned fea-
tures for radiance field prediction. Specifically, we leverage the
recent success in single-view 3D reconstruction [5, 8, 11, 14, 31,
39, 50, 51] and inject rich geometry information into radiance field
prediction by incorporating geometry-aware features of two shape
representations: i) voxel-aligned features learned from a coarse vol-
umetric grid and ii) fine surface-aligned features extracted from a re-
gressed point cloud. Intuitively, such geometry-aware features aug-
ment pixel-aligned features with additional “dimensions”, thereby
allowing previously ambiguous points to be separable. Furthermore,
by constraining the radiance field learning on these geometry-
aware features, our method not just synthesize higher quality im-
ages of novel views, but also recover more accurate underlying
geometries in radiance field, as witnessed in Fig. 1.

Our main contributions include:
• We propose a novel approach of learning neural radiance
fields from single-view images jointly conditioned on pixel-,
voxel-, surface-aligned features.

• We design an efficient way to alleviate the feature ambiguity
issue of solely pixel-aligned features by incorporating ex-
plicit geometry reasoning via single-view 3D reconstruction.

• We propose a hybrid use of geometric features, including
complementary coarse volumetric features and fine surface
features.

2 RELATEDWORK
2.1 Novel view synthesis and Neural radiance

field
The task of novel view synthesis aims to generate new views of a
scene from single or a set of sparse views. There are various kinds

𝑡0

𝑡1

𝑠0

source camera

target camera

Figure 2: Illustration of the feature ambiguity issue. The
feature ambiguity issues that originates from the many-to-
onemapping between queries and their corresponding pixel-
aligned features. Two rays shot from points t0 and t1 on tar-
get camera intersect the same ray shot from source camera.
After the pixel-aligned process, the two different intersect-
ing points will be projected to the same image coordinate s0

on image-plane, obtaining the same pixelwise feature.

of approaches dedicated to this problem. Traditional methods [9,
13, 26] choose to estimate light fields and then render novel views.
Recent years, with the advance of deep neural networks (DNN), a
plethora of models are designed to learn novel view synthesis in an
end-to-end manner. Pioneering methods [40, 54, 73] consider it as
a image-to-image transformation problem and directly utilize 2D
CNN to output novel views. These methods always cannot generate
satisfactory results for viewpoints that are largely deviated from
the given view.

Later work explore 3D-aware image synthesis and solve the in-
verse rendering problem via neural networks [12, 24, 36, 37, 48, 63,
74]. The common characteristic of this line of literature is that they
recover the explicit or implicit 3D geometry and appearance prop-
erties first, then render novel views at desired camera viewpoints
by means of differentiable rendering techniques [36] or genera-
tive models. Among these work, various 3D representations are
employed. DeepVoxels [48] represents 3D scene properties by low-
resolution volumetric feature grid lifted from 2D feature maps.
Wiles et al. [63] use 3D surface features that are learned from the
point cloud unprojected from the estimated depth map of the input
view. Other approaches [12, 24, 37, 74] learn implicit 3D embedding
that can be used to generate novel views of the same scene using
unsupervised learning techniques.

Recently, witnessing the great success of neural radiance field
(NeRF) [32], there has been an explosion of NeRF-based approaches
for novel view synthesis[4, 7, 27–29, 34, 42, 46, 56, 57, 60, 70, 71].
There are two divisions in the prevalence of NeRF: 1) the first track
tries to train scene-specific model for generating novel views of
the scene [27–29, 34, 42, 46, 56, 70]. Specifically, they capture many
diverse viewpoints of a scene, and optimizing a neural radiance field
for that scene. Despite synthesizing high-fidelity novel views, these
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Figure 3: Overview of our PVSeRF framework. Given a single input image, we first 1) extract the spatial feature map using a
fully convolutional image encoder E, 2) learn a volumetric grid through volume generator GV, and 3) regress a surface point
set of the object through a point set generator GS . From volumetric grid and surface point set, we can learn voxel features
and point-wise features. Then, for a 3D location X and a target view direction d, we query pixel-, voxel-, and surface-aligned fI,
fV, fS from spatial feature map, voxel features and point-wise features respectively. Next, the 3D location, view direction and
all corresponding features are directed into a MLP to predict density σ and radiance r. Lastly, the volume rendering is used to
accumulate the radiance prediction of points on the same ray to compute the final color values.

methods require longstanding optimization process and cannot
generalize to new scenes. 2) the second track attempts to learn
generalize neural radiance field across multiple scenes [4, 7, 57, 60,
71]. Among this, pixelNeRF [71] is the most relevant method to
ours, which learns the scene priors conditioned on the pixel-aligned
features, and can switch to new scenes flexibly. Although other
methods [4, 7, 57, 60] can also be applied to novel scene through
a single forward pass, they are equipped to multiple input views,
while we focus on the more challenging single-view input setting.

2.2 Single-view 3D Object Reconstruction
Given a single image containing a object, 3D object reconstruction
aims to recover the 3D geometry of the object. Traditional 3D recon-
struction methods [1, 16, 19, 55] need to find dense correspondence
across multi-view at the first, followed by the depth fusion stage.
Recently, due to the establishment of large-scale 3D model datasets,
such as ShapeNet [2] and ModelNet [66], it is popular to reconstruct
complete 3D shape from a single image by utilizing shape priors
modeled by deep neural networks. It also achieved various degrees
of success by designing 3D shape decoders tailored for different
shape representations including voxel [8, 15], point cloud [11, 35],
mesh [14, 39, 51], and implicit field [5, 31, 41, 44, 51, 52]. The
voxel decoders [8, 65] take advantages of conventional 3D con-
volution operations to generate volumetric grids. The point de-
coders [11, 68] directly regress the coordinates of 3D points. The

mesh decoders mainly approximate a target shape by performing
template mesh deformation [14, 21, 39, 50, 51]. The neural implicit
functions [5, 31, 41, 44, 51] represent 3D surfaces by continuous
functions defined in 3D space. In this paper, we want to incorporate
explicit geometry reasoning into the process of single-view novel
view synthesis by marrying single-view 3D shape generators with
a generic radiance field learning model.

3 PVSERF

3.1 Preliminary: NeRF
Mildenhall et al. [32] proposed neural radiance field (NeRF) to
represent a scene as a continuous 5D vector-valued function F of
color and density. In particular, given a 3D location X ∈ R3 and
viewing direction vector d ∈ R2, the continuous function F maps
them into the emitted color c = (r ,д,b) and volume density σ .
NeRF use a multi-layer perceptron (MLP) network parameterized
by weights Θ to approximate the 5D continuous function F (Θ) :
(X, d) → (c,σ ). To render the neural radiance field into a pixel,
NeRF follows the classic volume rendering technique [20, 30]:

C(r) =
∫ tf

tn
T (t)σ (r(t))c(r(t), d)dt (1)
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where r(t) = o+ td is a camera ray casted from the camera center o
along the direction d passing through the pixel on the image plane,
C(r) is the expected color for that pixel, andT (t) is the accumulated
transmittance along the ray from tn to t :

T (t) = exp
(
−

∫ t

tn
σ (r(s))ds

)
. (2)

In practice, these integrals are approximated using the numerical
quadrature rule [30]:

Ĉ(r) =
K∑
k=1

Tk (1 − exp (−σk (tk+1 − tk ))) ck ,

with Tk = exp
(
−

∑
k ′<k

σk ′ (tk ′+1 − tk ′)

)
.

(3)

During training, the weights of a NeRF network are randomly
initialized and optimized for an individual scene using a collection
of RGB images, by minimizing a sole photometric loss Lphoto =∑
r∈R ∥Ĉ(r) − C(r)∥22 , in which r ∈ R is a set of randomly sampled

rays from some images and C(r) is the ground truth color value of
the pixel corresponding to ray r.

3.2 Overview
Different fromNeRF’s approach whichmust be optimized per-scene
individually, our PVSeRF framework leverage the prior knowledge
across multiple scenes and can reconstruct a neural radiance field
from as little as a single image which is similar to pixelNeRF [71].
Specifically, given a single calibrated image Iwith its corresponding
intrinsic K and extrinsic parameters (rotation R and translation
t), our PVSeRF aims to learn a neural network for radiance field
reconstruction:

σ , c = PVSeRF(X, d; I, [Rt],K) (4)

where X ∈ R3 represents the 3D location, d ∈ R2 is the viewing
direction, σ is the volume density at X, and c is the predicted color
at X depending on the viewing direction d. By accumulating the σ
and c of multiple points sampled on the ray defined by X and d, we
can obtain the color values of all pixels in a target view image It
via differentiable rendering, thereby enabling novel view synthesis.

The distinct advantage of our PVSeRF is that it addresses the
feature ambiguity issue of pixelNeRF [71] by a novel geometric
regularization using both voxel- and surface-aligned features. As
aforementioned, pixelNeRF’s feature ambiguity issue stems from
the fact that its network is solely conditioned on the 2D pixel-
aligned features where multiple query 3D points are mapped to a
single location. To clarify this ambiguity, we propose to augment
the 2D pixel-aligned features with complementary 3D geometric
features for radiance field construction. As Fig. 3 shows, in ad-
dition to the pixel-aligned features, our method incorporates i)
voxel-aligned and ii) surface-aligned features into radiance field
prediction. Specifically,

• We follow [71] and extract the pixel-aligned features fI of
a query point X by projecting it with [Rt] and K to the 2D
image coordinates x , indexing the multi-scale feature maps
of an input image I extracted by a fully-convolutional image
encoder E.

• We extract the voxel-aligned features fV of a query point X
by trilinearly interpolating X in a low-resolution volumetric

feature FV learnt from the input image I using a volume
generator GV. Note that fV only captures coarse geometry
contexts of the scene due to the low-resolution nature of FV.

• To capture the geometric information on surface, we extract
the fine-grained surface-aligned features fS of a query point
X as the weighted sum of the associated features FS of its K
nearest neighbors in a point cloud S, which is reconstructed
from the input image I using a point set generator GS .

Thus, our PVSeRF is conditioned on fI, fV, and fS and can be refor-
mulated as:

σ , c = PVSeRF(X, d; fI ⊕ fV ⊕ fS) (5)
where ⊕ denotes a concatenation operation. Thanks to the incor-
poration of fV and fS , the previously ambiguous points that share
the same fI are now separable by the concatenation fI ⊕ fV ⊕ fS .
We present more details about each component of our method as
follows.

3.3 Feature Extraction

Pixel-aligned Features Following pixelNeRF [71], we also use
pixel-aligned features that contain fine-grained details about the
scene’s geometry and appearance properties to learn neural radi-
ance fields. Given an input image I ∈ RH×W ×3, we employ a fully-
convolutional image encoder E implemented by ResNet-34 [17] to
extract its multi-scale feature maps {F0I , F

1
I , F

2
I , F

3
I }, which are the

intermediate features at ’conv1’, ’layer1’, ’layer2’, and ’layer3’ of
ResNet-34 but upsampled to the size of the input image I. Then, we
acquire the pixel-aligned feature vector fI of a query 3D point X by
projecting X to the 2D image coordinates x , and bilinearly inter-
polating the feature maps concatenated by {F0I , F

1
I , F

2
I , F

3
I } through

B:
fI = B(F0I ⊕ F1I ⊕ F2I ⊕ F3I ,K[Rt]X) (6)

where ⊕ represents feature concatenation. However, K[Rt] may
project multiple 3D points X along the viewing direction of input
image to a single position on the 2D image coordinates, leading
to ambiguous fI and blurry synthesized novel views. To clarify
such ambiguity, we propose to augment fI with complementary
geometric features, including both coarse voxel-aligned features
learned from a volumetric grid, and fine surface-aligned features
extracted from a regressed point cloud.

Voxel-aligned Features We compute the voxel-aligned feature
fV with respect to X as follows. First, we reconstruct a volumetric
feature grid FV ∈ R32×32×32×C from the input image I using a
volume generator consisting of a VGG-16 [47] image encoder and
a 3D CNN decoder. Then, we have:

fV = T(FV,Ω(X)) (7)

whereT is amulti-scale trilinear interpolation inspired byGeoPiFu [18]
and IFNet [6], Ω(X) is a point set around X:

Ω(X) = {X + s · n|n = (1, 0, 0), (0, 1, 0), (0, 0, 1), ...} (8)

where s ∈ R is the step length, n ∈ R3 represents the unit vectors
defined along the three axes in a Cartesian coordinate system. Intu-
itively, fV is a concatenation of all queried feature vectors at points
in Ω(X) that are trilinearly interpolated from FV.
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plane bench cbnt. car chair disp. lamp spkr. rifle sofa table phone boat mean

DVR [38] 25.29 22.64 24.47 23.95 19.91 20.86 23.27 20.78 23.44 23.35 21.53 24.18 25.09 22.70
↑ PSNR SRN [49] 26.62 22.20 23.42 24.40 21.85 19.07 22.17 21.04 24.95 23.65 22.45 20.87 25.86 23.28

pixelNeRF [71] 29.76 26.35 27.72 27.58 23.84 24.22 28.58 24.44 30.60 26.94 25.59 27.13 29.18 26.80
Ours 31.32 27.43 28.40 28.12 24.37 24.61 28.73 24.44 30.82 27.42 26.60 26.99 29.92 27.48

DVR [38] 0.905 0.866 0.877 0.909 0.787 0.814 0.849 0.798 0.916 0.868 0.840 0.892 0.902 0.860
↑ SSIM SRN [49] 0.901 0.837 0.831 0.897 0.814 0.744 0.801 0.779 0.913 0.851 0.828 0.811 0.898 0.849

pixelNeRF [71] 0.947 0.911 0.910 0.942 0.858 0.867 0.913 0.855 0.968 0.908 0.898 0.922 0.939 0.910
Ours 0.956 0.923 0.912 0.940 0.869 0.867 0.915 0.853 0.965 0.912 0.911 0.915 0.940 0.915

DVR [38] 0.095 0.129 0.125 0.098 0.173 0.150 0.172 0.170 0.094 0.119 0.139 0.110 0.116 0.130
↓ LPIPS SRN [49] 0.111 0.150 0.147 0.115 0.152 0.197 0.210 0.178 0.111 0.129 0.135 0.165 0.134 0.139

pixelNeRF [71] 0.084 0.116 0.105 0.095 0.146 0.129 0.114 0.141 0.066 0.116 0.098 0.097 0.111 0.108
Ours 0.065 0.098 0.097 0.087 0.128 0.133 0.104 0.140 0.066 0.104 0.082 0.107 0.101 0.096

Table 1: Quantitative comparison on category-agnostic view synthesis. The best quantitative values are marked as boldface.
Our method outperforms all baselines by a wide margin in terms of all mean metrics.

Input SRN DVR PixNeRF Ours GT Input SRN DVR PixNeRF Ours GT Input SRN DVR PixNeRF Ours GT

Figure 4: Qualitative comparison on category-agnostic view synthesis. A singlemodel is trained among 13 ShapeNet categories,
and tested on a single image for novel view synthesis. We observe that our method produces detailed novel views, and is con-
sistent in both geometry and appearance. Conversely, pixelNeRF [71] fails to infer correct geometry and produce inconsistent
and blurry textures.

Surface-aligned Features Although they capture a global context
about the shape of a 3D object, voxel-aligned features are queried
from a low-resolution volumetric grid and thus lack geometric infor-
mation on surface. As a complement, we introduce surface-aligned
features that capture fine details of surface to facilitate radiance
field learning. Given an input image I, we first regress a sparse point
cloud S of size 1024 from I using a point set generator GS based
on GraphX-convolutions [35]. Then, we feed the generated point
cloud to a PointNet++ [45] network to extract point-wise features
FS . For each query point X, we define its surface-aligned feature
fS as the weighted sum of the corresponding feature vectors of X’s
K-nearest neighbors in S:

fS =
K∑
k=0

wk ∗ FSm(k ) (9)

where m(k),k = 0, 1, 2...,K is the indices of the K points, wk is
inversely proportional to its distance to X:

wk = 1/(1 + exp(| |X − Sm(k ) | |) (10)

In this way, the features from the nearest neighbor contributes most
to the fS , and vice versa.

3.4 Radiance Field Prediction and Rendering
We parameterize our PVSeRF framework using a MLP f which
regresses the volume density σ and view-dependent radiance r
from the 3D coordinates of a query point X, a viewing direction d,
and the corresponding pixel-, voxel-, and surface-aligned features
(i.e. fI, fV, and fS) extracted from the input single-view image I:

σ , c = f (γm (X),γn (d); fI ⊕ fV ⊕ fS) (11)

where γm and γn are position encoding functions [32, 59] applied
to X, d respectively, which alleviates the positional bias inherent
in Cartesian coordinates without sacrificing their discrepancy in-
between. Specifically, γ maps Cartesian coordinates from R into a
high dimensional space R2L :

γL(p) = (sin(20πp), cos(20πp),

..., sin(2L−1πp), cos(2L−1πp))
(12)

whereγ (·) is applied separately to each component of vector p. With
the constructed radiance field represented by σ and c, we render
novel view images via the numerical quadrature approximation
of differentiable volume rendering techniques which illustrated
in Section 3.1.
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Figure 5: Failure case of explicit geometry reasoning. Under
the challenging viewpoint, the scene geometry is ambigu-
ously captured in a single image, causing the network being
unable to predict plausible geometries.

3.5 Loss Functions
Corresponding to our pixel-, voxel- and surface-aligned features,
we train our model using three different loss functions as follows.

RGBRendering Loss Similar to existing works in the NeRF series,
we use L2 rendering loss as the main loss function. It constrains
that the rendered color value of each ray should be consistent with
the corresponding ground-truth pixel value. Thus, we have:

Lr = ∥Ĉ(r) − C(r)∥22 (13)

where Ĉ(r) andC(r) are the predicted and ground-truth color values
of sampled pixels from novel view Inovel with viewpoint [Rt]novel
respectively.

VolumeReconstruction LossTo learn volumetric features FV, we
add a 3D convolutional layer after FV to estimate a low-resolution
occupancy volume V ∈ R32×32×32, whose ground-truth label is V∗.
Then, we apply a standard binary cross-entropy loss and have:

Lv =
∑

i ∈[1:32]3
V∗(i) logV(i) + (1 − V∗(i)) log(1 − V(i)) (14)

Point Regression LossWe employ the Chamfer distance to con-
straint our point set generation and have:

Lp =
∑
q∈S

min
q∗∈S∗

∥q − q∗∥2 +
∑

q∗∈S∗

min
q∈S

∥q − q∗∥2 (15)

where S is the predicted point set and S∗ is its corresponding
ground truth.

Overall Loss Function Our overall loss function is:

L = λ1 ∗ Lr + λ2 ∗ Lv + λ3 ∗ Lp (16)

where λ1, λ2, and λ3 are weighting parameters.

4 EXPERIMENTS
To demonstrate the superiority of our PVSeRF, we first compare it
against state-of-the-art methods on two single-image novel view
synthesis tasks, i.e. category-agnostic view synthesis and category-
specific view synthesis. Then, we evaluate our approach on real
images, demonstrating the generalization ability of our method.

Finally, we conduct ablation studies to validate the effectiveness of
each component of our PVSeRF.
Datasets We benchmark our method extensively on the synthetic
images from the ShapeNet [2] dataset. Specifically, for the category-
agnostic view synthesis task, we use the renderings and splits from
Kato et al. [21] which renders objects from 13 categories of the
ShapeNetCore-V1 dataset. Each object was rendered at 64×64 reso-
lution from 24 equidistant azimuth angles, with a fixed elevation
angle. For the category-specific view synthesis task, we use the
dataset and splits provided by Sitzmann et al. [49], which renders
6,591 chairs and 3,514 cars from the ShapeNetCore V2 dataset. For
the evaluation on real images, we use the collected real-world cars
images from [25]. To provide supervision for volume reconstruction
and point set regression, we convert each ground-truth mesh to a
point set of size 2048 and a volumetric grid of resolution 323.
ImplementationDetailsWe implement ourmodel with PyTorch [43].
Details of the network architecture are presented in the supple-
mentary material. The training process of our approach consists
of two stages: i) we pre-train the volume generator GV and the
point set generator GS respectively using loss functions defined in
Eq. 14 and Eq. 15. Specifically,GV is trained with an initial learning
rate of 10−3 and a batch size of 64 for 250 epochs. The learning
rate drops by a factor of 5 after 150 epochs. GS is trained with
an initial learning rate of 10−5 and a batch size of 4 for 10 epochs.
The learning rate drops by a factor of 3 after 5 and 8 epochs. ii) we
fine-tune the whole network for 400 epochs. We set the learning
rate as 10−4 and the batch size as 4. We use an Adam [22] optimizer
for all the training mentioned above. We empirically set the multi-
scale trilinear interpolation step length s = 0.0722, the number of
nearest neighbors K = 5, the number of frequencies of positional
encoding for X, d asm = 6, n = 0, and the weights for loss function
as λ1 = λ2 = λ3 = 1.

Evaluation Protocol Following the community standards [32, 38,
49], we use peak signal-to-noise ratio (PSNR) and structural simi-
larity index (SSIM) [62] to measure the quality of the synthesized
novel views. We also use LPIPS [72] that has been shown to be
closer to human perception.

4.1 Category-agnostic View Synthesis
Category-agnostic novel view synthesis aims to learn object priors
that can generalize across multiple categories.

Baselines We compare our method against three closely-related
state-of-the-art methods: SRN [49], DVR [38] and pixelNeRF [71],
which are applicable to synthesize novel views for all categories. For
DVR and pixelNeRF, we use pretrained models from their official
Github repositories1. For SRN [49], we use the model trained by [71]
to make it comparable with [49, 71]. All methods are trained using
the same dataset and settings introduced in Sec. 4. To facilitate a
fair comparison, we follow the random view indices provided by
pixelNeRF and select the input view for each test object accordingly.
Results As Fig. 4 shows, our method outperforms all previous
methods by synthesizing more detailed novel views. In addition, it

1Niemeyer et al. [38]: https://github.com/autonomousvision/differentiable
_volumetric_rendering, Yu et al. [71]: https://github.com/sxyu/pixel-nerf.
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PixNeRF Ours GT      Input      Input PixNeRF Ours GT

Figure 6: Qualitative comparison on category-specific view synthesis. The performance of our method is comparable to that
of the state-of-the-art pixelNeRF [71].

PSNR↑ SSIM↑

TCO [53] 21.27 0.88
dGQN [10] 21.59 0.87

Chairs SRN [49] 22.89 0.89
pixelNeRF [71] 23.72 0.91
Ours 23.33 0.91

SRN [49] 22.25 0.89
Cars pixelNeRF [71] 23.17 0.90

Ours 22.98 0.90
Table 2: Quantitative comparison on category-specific view
synthesis. Since the renderings from [49] containmany chal-
lenging camera viewpoints, our performance is degenerated
ascribe to the invalidity of explicit geometry reasoning. Nev-
ertheless, our method is comparable to the state-of-the-art
method [71].

can be observed that i) the two baseline methods, DVR [38] and
SRN [49], tend to generate blurry images and distorted geometries;
ii) pixelNeRF [71] shows blurry and inconsistent appearance. The
quantitative results in Table 1 further justify the superiority of our
method against all baselines in terms of the mean values of PSNR,
SSIM and LPIPS metrics. Notably, the PSNR of our approach attains
a significant improvement over the second best method by 0.68.

4.2 Category-specific View Synthesis
For category-specific view synthesis, all methods are trained on
the chair or car categories of ShapeNet [2].

Baselines We choose SRN [48] and pixelNeRF [71] as the baseline
methods. We also report the quantitative results from TCO [53]
and dGQN [10] provided by [49], to keep in line with prior arts.
ResultsWe show the quantitative and qualitative results in Table 2
and Fig. 6 respectively. It can be observed that the performance of
our method is comparable to the state-of-the-art method [71] both
qualitatively and quantitatively. Such comparable results indicate

that the advantages of our method are not significant in some neu-
ral rendering cases. We carefully investigate the results and ascribe
this to the invalidity of explicit geometry reasoning in some cases
(Fig. 5). Since the renderings provided by [49] contain many chal-
lenging camera viewpoints, the explicit geometry reasoning from
single-view becomes a more challenging problem. We postpone the
discussion of this phenomenon to Sec. 5.

4.3 Novel View Synthesis on Real Images
To highlight the generalization ability of our method, we evalu-
ate our pretrained models directly on real images without any
finetuning. Specifically, we first take the images from the Stan-
ford cars dataset [25] and apply the PointRend model [23] to mask
their clutter backgrounds. Then, we feed the preprocessed images
into a category-specific model of ShapeNet “cars” to predict novel
views. As Fig. 7 shows, our method can not only synthesize visually
compelling novel views, but also infer accurate geometries. This ef-
fectively demonstrates the excellent generalization performance of
our method on real image as it is only trained on synthetic images.

4.4 Ablation Study
To validate the effectiveness of each proposed component, we con-
duct an ablation study on our method, yielding three variants: i)
w/o surface-aligned feature, in which only pixel- and voxel-aligned
features are incorporated; ii) w/o voxel-aligned feature, where the
radiance field is conditioned only on pixel- and surface-aligned fea-
tures; iii) w/o joint training, in which we fix all feature extractors2
and solely train the radiance field predictor f . As Table 3 shows,
it can be observed that the w/o joint training variant constantly
performs the worst among all variants. This demonstrates that the
joint learning of pixel-, voxel- and surface-aligned features is crucial
in our explicit geometric reasoning. In addition, the performance of
the w/o surface-aligned variant is always worse than the w/o voxel-
aligned feature variant, as the voxel-aligned features queried from
a low-resolution volume are better at capturing global geometry

2We use a PointNet++ [45] model trained on PartNet [33] segmentation task as a
point-feature extractor.
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Input Novel Views Mesh

Figure 7: Novel view synthesis results on real car images. Although extensively trained on synthetic data, our method can
easily generalize to real single-view images, and produce plausible view synthesis results and underlying geometries.

plane bench cbnt. car chair disp. lamp spkr. rifle sofa table phone boat mean

w/o joint 29.03 25.18 26.12 25.82 21.97 22.25 26.33 22.19 28.55 25.18 24.27 24.67 27.54 25.16
w/o surface-aligned 30.82 27.00 28.31 27.67 24.05 24.33 28.73 24.33 30.63 26.97 26.27 26.85 29.58 27.15

↑ PSNR w/o voxel-aligned 30.83 27.14 28.40 27.93 24.35 24.66 29.10 24.75 31.05 27.29 26.48 27.01 29.61 27.38
Ours 31.32 27.43 28.40 28.12 24.37 24.61 28.73 24.44 30.82 27.42 26.60 26.99 29.92 27.48

w/o joint 0.926 0.863 0.864 0.924 0.844 0.803 0.826 0.812 0.947 0.878 0.853 0.836 0.923 0.876
w/o surface-aligned 0.954 0.917 0.912 0.936 0.860 0.860 0.915 0.849 0.967 0.904 0.906 0.912 0.940 0.911

↑ SSIM w/o voxel-aligned 0.955 0.921 0.913 0.941 0.867 0.870 0.915 0.856 0.966 0.911 0.910 0.917 0.939 0.915
Ours 0.956 0.923 0.912 0.940 0.869 0.867 0.915 0.853 0.965 0.912 0.911 0.915 0.940 0.915

w/o joint 0.097 0.134 0.134 0.099 0.137 0.163 0.175 0.164 0.098 0.123 0.120 0.149 0.120 0.123
w/o surface-aligned 0.064 0.100 0.096 0.094 0.136 0.132 0.102 0.144 0.064 0.108 0.085 0.100 0.100 0.099

↓ LPIPS w/o voxel-aligned 0.063 0.096 0.096 0.085 0.130 0.126 0.100 0.137 0.060 0.104 0.081 0.104 0.100 0.095
Ours 0.065 0.098 0.097 0.087 0.128 0.133 0.104 0.140 0.066 0.104 0.082 0.107 0.101 0.096

Table 3: Quantitative comparison of ablation studies. Our joint method that employs complementary coarse volumetric fea-
tures and fine surface features achieves the best performance. Whereas, removing any part of the proposed method will cause
more or less deterioration.

Figure 8: Illustration of the complementary properties of
point set and volumes.We randomly show several predicted
geometries. It can be seen that these two representations ex-
hibit reciprocal behaviors: the missing parts of volumetric
grid are spanned by point set, while the regions where the
point set is too sparse are occupied by volumes.

contexts. Our full method achieves the best performance among all
variants, which validates the effectiveness of employing a hybrid
of geometric features that complement each other [61]. This is also
demonstrated in Fig. 8.

5 CONCLUSION
For the task of novel view synthesis from single-view RGB im-
ages, we present PVSeRF, a novel learning framework that recon-
structs neural radiance fields conditioned on joint pixel-, voxel-, and

surface-aligned features. By augmenting hybrid geometric features
with image features, we effectively address the feature confusion
issue of pixel-aligned features. Compare to previous arts, our frame-
work gains superior or comparable results in terms of both visual
perception and quantitative measures. Moreover, a suite of ablation
studies also verify the efficacy of our key contributions.

Limitation and Future Works Despite the effectiveness of our
method, there are still some limitations to be addressed in future
work. First, the performance of our method is dependent on the
amount of geometric information within the input single-view im-
age. As discussed in Sec. 4.2, when the scene geometry is little
captured in the input image due to challenging viewpoints, the
novel views synthesized by our method may become less clear. In
future work, we plan to include multi-view consistency as an addi-
tional supervision to train our geometry reasoning network, thereby
increasing its robustness to challenging viewpoints. Secondly, we
focus on the geometry reasoning from complete geometries (i.e. sur-
face and voxel) of 3D shapes that reconstructs neural radiance fields
from single-view RGB image and have not investigated that from
more challenging partial geometries (e.g. depth maps or multiplane
images [58, 64]). In future work, we plan to extend our method to
such partial geometries, thereby making our method more flexible.
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A TRAINING COMPLEXITY
For our category-agnostic experiments, the training takes 11 days
on 2 RTX 3090: 1 day for the pre-training ofGV andGS , and 10 days
for the fine-tuning the entire network. For our category-specific
experiments, the total training time is 7 days 12 hours on a single
RTX 3090: 12 hours for the pre-training and 7 days for the fine-
tuning.

B DETAILS OF NETWORK ARCHITECTURE
Image Encoder E. We implement the image encoder using the

pretrained ResNet-34 [17] architecture with batch normalization.
To capture multi-scale features, we employ the ’conv1’, ’layer1’,
’layer2’, and ’layer3’ of ResNet-34. The default max-pooling layer
after ’conv1’ is removed to keep a feasible feature size at deep
layers. Therefore, for a H ×W image, we have four scales of feature
maps, i.e. feature maps with spatial size H/2L ×W /2L ,L = 1, 2, 3, 4.
Finally, all feature maps are upscaled toH/2×W /2 and composited
as the final image features.

Volume Generator GV. The implementation of our volume gen-
erator is similar to the encoder-decoder architecture introduced
in Pix2Vox [67]. Specifically, we use the Pix2Vox-F architecture as
shown in Fig. 9. To construct the volumetric feature grid FV, we
concatenate the generated volume and the features of the second
last layer, so the final feature grid is of size 32 × 32 × 32 × 9. Note
that for 64 × 64 images, we remove the last max-pooling opera-
tion between convolutional layers, to avoid the spatial feature size
shrinking too much at the bottleneck.

Point Set GeneratorGS and Feature Extractor. We regress a point
set of sizeN = 2048 from the input image by leveraging the PCDNet
introduced in [35]. We refer the reader to [35] for more details.
For our point-wise feature extractor, we use a similar network
originated from PointNet++ [45]. Specifically, we use the network
structure for semantic and part segmentation, which comprises
three set abstraction layers and three feature propagation layers.
Let SA(K , r , [l1, ..., ld ]) denotes the set abstraction (SA) layer withK
local regions of ball radius r , using the PointNet [3] architecture of
d fully connected layers with width li (i = 1, ...,d); and FP(l1, ..., ld )
denotes the feature propagation (FP) layer; the network architecture
of our point-wise feature extractor can be described as:

SA(512, 0.2, [64, 64, 128])
⇊

SA(128, 0.4, [128, 128, 256])
⇊

SA([256, 512, 1024])
⇊

FP(256, 256)
⇊

FP(256, 128)
⇊

FP(128, 128)

Therefore, the final point-wise feature is of size B ×N × 128, where
B is object batch size and N is point set size.

C QUALITATIVE COMPARISON FOR
ABLATION STUDY

In addition to the quantitative comparison for ablation study in
Table 3 of the main manuscript, we present the qualitative results
in Fig. 10. It can be seen that the w/o joint variant shows the worst
visual quality, while the w/o surface-aligned and the w/o voxel-
aligned variants gradually improve the results. More importantly,
our full method combines the advantages of voxel- and surface-
aligned techniques, and achieves the most compelling qualitative
results. This also conforms to our discussions in Section 4.4 of the
main paper.
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Figure 9: Network structure of volume generator GV. We use an encoder-decoder architecture similar to the Pix2Vox-F net-
work [67]. For 64 × 64 input image, the last max-pooling layer is removed.

Figure 10: Qualitative comparison of ablation study. For each object, from left to right: input image, w/o joint, w/o surface-
aligned, w/o voxel-aligned, our full method, and ground truth. Our full method exhibits the best visual quality, please see
more discussions in Appendix C.
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