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Fig. 1. Nowadays, 3D heads can be easily digitalized with high-fidelity geometry and texture, like the setup used in FaceScape. In this work, we proposed
EMS, a learning-based approach, which can further reconstruct 3D eyebrows from just the frontal-view image. (a) the input image. (b) the cropped eyebrow
image from (a). (c) our reconstructed fiber-level 3D eyebrow model rendered with multiple views. (d) the cropped rendering of (e) for comparison with (b). (e)
putting our result on the textured 3D head can further improve the realism of face digitalization.

Eyebrows play a critical role in facial expression and appearance. Although
the 3D digitization of faces is well explored, less attention has been drawn
to 3D eyebrow modeling. In this work, we propose EMS, the first learning-
based framework for single-view 3D eyebrow reconstruction. Following the
methods of scalp hair reconstruction, we also represent the eyebrow as a set
of fiber curves and convert the reconstruction to fibers growing problem.
Three modules are then carefully designed: RootFinder firstly localizes the
fiber root positions which indicate where to grow; OriPredictor predicts an
orientation field in the 3D space to guide the growing of fibers; FiberEnder is
designed to determine when to stop the growth of each fiber. OurOriPredictor
directly borrows the method used in hair reconstruction. Considering the
differences between hair and eyebrows, both RootFinder and FiberEnder
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are newly proposed. Specifically, to cope with the challenge that the root
location is severely occluded, we formulate root localization as a density map
estimation task. Given the predicted density map, a density-based clustering
method is further used for finding the roots. For each fiber, the growth starts
from the root point and moves step by step until the ending, where each step
is defined as an oriented line segment with a constant length according to the
predicted orientation field. To determine when to end, a pixel-aligned RNN
architecture is designed to form a binary classifier, which outputs stop or not
for each growing step. To support the training of all proposed networks, we
build the first 3D synthetic eyebrow dataset that contains 400 high-quality
eyebrow models manually created by artists. Extensive experiments have
demonstrated the effectiveness of the proposed EMS pipeline on a variety of
different eyebrow styles and lengths, ranging from short and sparse to long
bushy eyebrows.

CCS Concepts: •Computingmethodologies→ Shapemodeling; Neural
networks.
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1 INTRODUCTION
Recently, creating a digital human has become easier along with
the development of capturing setups and also deep-learning based
approaches. In addition to numerous studies on the digitization of
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the head and human body [Bao et al. 2021; Deng et al. 2019; Feng
et al. 2021; Li et al. 2017; Loper et al. 2015; Saito et al. 2020; Xiu et al.
2022; Zheng et al. 2021; Zielonka et al. 2022], there are also many
works that pay attention to the details of the facial features due to
their vital roles in supporting a high-fidelity face, for example, the
modeling of eyes [Bérard et al. 2016, 2014; Bermano et al. 2015; Li
et al. 2022; Wen et al. 2017], mouth [Dinev et al. 2018; Garrido et al.
2016; Ploumpis et al. 2022; Zoss et al. 2019, 2018] and teeth [Velinov
et al. 2018; Wu et al. 2016; Yang et al. 2020a; Zhang et al. 2022].
Comparedwith them, facial hair (including eyebrows, eyelashes, and
beards) has not received sufficient attention. Facial hair, particularly
eyebrows, also plays a vital role in representing unique personal
characteristics. According to [Sadr et al. 2003], eyebrows represent
a significant influential attribute for facial recognition. To take high-
fidelity human digitization one step further, in this work, we focus
on the 3D reconstruction of eyebrows.
To the best of our knowledge, no prior work has been devoted

to algorithms specifically tailored for 3D eyebrow modeling. Ex-
isting facial hair modeling methods [Beeler et al. 2012; Winberg
et al. 2022] primarily focus on recovering the overall facial hair.
They adopted multi-view stereo (MVS) [Seitz et al. 2006] systems
customized to reconstruct 3D facial hair fibers from the appear-
ance cues of multi-view images. These methods rely on specialized
hardware and well-controlled settings, making them not widely
accessible to the average consumer. To ease the capturing proce-
dure and improve user-friendliness, several works [Herrera et al.
2010; Rotger et al. 2019] have been proposed to attempt conducting
reconstruction from monocular inputs. However, as the first at-
tempt, their methods are too straightforward and crude, making the
results far from natural-looking. Specifically, rule-based methods
neglect accurate root point localization and fiber growing direction
determination. We argue that the formidable challenges of severe
self-occlusion and single-view ambiguity greatly hinder the success
of rule-based approaches. Thus, in this work, we propose to use
data-driven techniques for single-view 3D eyebrow reconstruction.

Leveraging data-driven methods is a popular solution frequently
employed in the problem of single-view scalp hair reconstruction [Wu
et al. 2022; Zheng et al. 2023; Zhou et al. 2018]. The incorporation of
learned priors from the data can provide information for occluded
regions and recover more plausible results. Existing works usually
use 3D strands to represent hairs and then the problem becomes the
generation of those strand curves. Regarding the extreme complex-
ity of generating a heavy amount of strands, the key idea to simplify
this problem is to grow curves from the scalp surface. To be specific,
for each strand, they usually considered three questions: where to
start; how to grow; when to stop. As all root points of hairs cannot
be observed typically, the commonly used way is to pre-sample a
fixed number of points (usually 10k) densely on the scalp surface
as starting positions. Then, each root point will initiate the growth
of a fiber and each fiber will grow step by step, where each step is
defined by an oriented line segment with a pre-defined constant
length. To guide such growth, an orientation field is required, and
inferring an orientation field from the input image thus becomes
one of the core problems. Another important issue is determining
when to stop the growth of fibers. Existing methods directly used

the 3D contour of the hairs for strand cutting, where they typically
predicted a 3D occupancy field to define the scalp hair contour mesh.

For 3D eyebrows, we use fiber (similar in concept to strand with
shorter length) as the output format and treat it as a curve growing
problem. For the prediction of the orientation field, we directly adopt
the method in [Wu et al. 2022]. However, we found it is not proper to
use existing methods of root localization and strand cutting in hair
reconstruction for eyebrow modeling. This is due to the inherent
differences between scalp hairs and eyebrows. At first, although the
root points of eyebrows may be severely occluded, they can still be
partially observed. Thus, an intuitive uniform sampling will produce
results that do not match the input image. Second, considering a
frontal-view facial image, the fibers of the eyebrow may not only
have out-of-plane growth but also in-the-plane growing manner.
For in-the-plane growing directions, a 3D contour is usually not
sufficient for accurate fiber length control.

To address the aforementioned challenges, we proposed two novel
learning-based methods for root localization and fiber length deter-
mination individually. Due to the severe occlusion of the root points,
a direct detection solution for root localization tends to fail. We thus
introduce the density map as an intermediate representation of the
roots. Specifically, we first construct an image-to-image translation
network to map the input image into a density map, where each
pixel of the density map represents the response of a root existence.
Then, a density-based clustering method is employed to extract
root locations from the predicted density map. Next, we lift the 2D
root points to 3D positions. The above density map prediction net-
work combined with the clustering and lifting method is termed as
RootFinder . After all root points are confirmed, each root will grow
a fiber, which will then grow step by step. Similar to the method in
hair reconstruction, each growing step follows an orientation field
which is predicted based on a pixel-aligned implicit learning frame-
work [Wu et al. 2022]. The prediction method of the orientation
field is termed as OriPredictor . For each growing fiber, we observed
that determining when to stop depends not only on its location but
also on the image appearances along its growth trajectory. Based on
this assumption, we design a pixel-aligned stacked RNN [Giles et al.
1994] architecture to form a classifier that outputs a binary status
for each growing step: stop or continue. To be specific, the network
is conditioned on both a positional encoding of the sequential 3D
points and an accumulated pixel-aligned image feature along the
historical growing path. We term this as FiberEnder .

To summarize, we introduce EMS in this work, which is the first
deep learning-based framework to reconstruct 3D eyebrow models
from a single portrait image. Our EMS consists of three modules:
RootFinder ,OriPredictor and FiberEnder . To support both the training
and evaluation of all three modules, we also contribute a dataset
with well-annotated synthetic fiber-level eyebrows of 400 people in
FaceScape [Yang et al. 2020b], which are manually created by artists.
Extensive experiments have demonstrated the superiority of our
method over existing rule-based methods and the effectiveness of
all our module designs. The results of in-the-wild testing also verify
the generalization ability of our method, even when it is trained
using synthetic data only.

The main contributions of this work are listed as follows:
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• We propose the first learning-based framework for 3D eye-
brow modeling, capable of reconstructing fiber-level eyebrow
geometry from only a single portrait image. Our method
achieves state-of-the-art performance.

• Considering the differences among eyebrows and hairs, we
propose a new method for root point localization which lever-
ages a density map as an intermediate representation.

• We are the first to formulate fiber length determination of
eyebrows as a classification problem and design a novel pixel-
aligned RNN architecture for solving it.

• We contribute the first high-quality 3D synthetic eyebrow
dataset EBStore, which will be released to benefit the research
in this area.

2 RELATED WORK
This section provides a comprehensive review of existing works
closely related to our work.

Scalp Hair Capturing. Scalp hair modeling has been extensively
explored in computer graphics over the past few decades. Grabli
et al. [2002] utilized hair scattering profiles to recover 3D hair orien-
tation from image sequences captured under moving light sources.
Follow-up works [Luo et al. 2012; Paris et al. 2004, 2008; Wei et al.
2005] estimate a dense vector field from different views or under
different illuminations with 3D geometry constraints, e.g., visual
hull, structure light, or epipolar constraints. To improve the hair
capturing quality, various sensor modalities have also been explored,
such as depth-of-focus devices [Jakob et al. 2009], thermal imaging
cameras [Herrera et al. 2012], or RGB-D sensors [Hu et al. 2014b].
Luo et al. [2013] and Hu et al. [2014a] used shape primitives like
ribbons and wisps to fit a fused point cloud generated by MVS for
the acquisition of complete hair strands that connect to the scalp.
Additionally, Xu et al. [2014] traced a motion path for each hair pixel
for dynamic hair temporal coherence. Nam et al. [2019] introduced
a slanted line-based MVS framework with a novel cost function.
Sun et al. [2021] leveraged a per-pixel lightcode to boost the multi-
view consistency of 3D hair segments and estimate hair reflectance
for realistic rendering. Rosu et al. [2022] attempted to recover hair
strand geometry and appearance by differentiable rendering with
multi-view inputs for the first time and explored a novel represen-
tation that parameterizes a hairstyle using a latent texture map on
the scalp. To simplify the data acquisition, several works investigate
modeling hair from sparse views [Zhang et al. 2017, 2018] and selfie
videos [Liang et al. 2018]. Recently, Kuang et al. [2022] introduced a
deep learning-based framework for multi-view strand hair modeling
that enables the reconstruction of view-consistent hair geometry
using only sparse views. However, the complex hardware setup or
long processing cycles make these techniques inaccessible to the
average user.

Facial Hair Capturing. Compared to the extensive research on
digital modeling of human scalp hair, facial hair capturing has been
a relatively neglected research area. Pioneer work by [Herrera et al.

2010] attempts to model static facial hair using statistical character-
istics of texture images, growing 3D hairs through particle shooting
techniques, and modeling facial hair geometry roughly. To generate
connected piece-wise 3D facial hair primitives on a static face, Beeler
et al. [2012] proposed a passive, multi-camera system with uniform
lighting, which incorporates 2D hair detection and 3D facial hair
growing algorithms. While capturing individual fibers of facial hair
is available, their approach involves considerable post-processing
and refinement steps to generate plausible hair segments. Further-
more, their system also requires additional close-up photographs
of the facial hair regions. Contemporary work by [Fyffe 2012] in-
troduces a novel photo-consistency cost function to help identify
areas containing facial hair and triangulate 2D line segments to a
set of 3D oriented hair particles from multiple views. Additionally,
LeGendre et al. [2017] employed asperity scattering and hair fiber
geometric parameter fitting techniques along vellus hairs’ backlit
silhouette to model barely noticeable and fine texture vellus hair.
Inspired by [Beeler et al. 2012], Rotger et al. [2019] extended the
task formulation with just a single-view image as input, but with
limited fidelity and realism due to the representation of 3D facial
hair fibers with only a simple hair growing parametric model. Re-
cently, Winberg et al. [2022] improved upon [Beeler et al. 2012] to
integrate dense facial hair tracking and underlying skin deformation
capabilities. Although their method obtains impressive results in
capturing beard hair from dynamic sequences, it struggles to capture
eyebrow geometry with high-frequency details. The primary cause
of this limitation is the inherent self-occlusion problem in eyebrows,
which is exacerbated for thicker, bushier eyebrows. Consequently,
the precision of identifying hair follicle locations and hair fiber
matching is diminished even with the input of multiple front-view
images. These factors greatly affect the fidelity and realism of the
reconstructed eyebrows and highlight the need for more specialized
techniques to address the eyebrow modeling complexities.

Single-View Scalp Hair Modeling. In contrast to multi-view scalp
hair reconstruction techniques, single-view hair modeling meth-
ods [Chai et al. 2013, 2012] demonstrate notable advantages in gen-
erality and efficiency. Later works by [Chai et al. 2016; Hu et al.
2015] provide synthetic 3D hair databases and generate satisfactory
results from a single portrait image based on data-driven techniques.
However, the fidelity of their hair reconstruction results is highly
dependent on the quality and diversity of the hair dataset. In partic-
ular, the retrieved hair model is prone to fail if a 3D hair model with
an identifiable likeness is not available in the database. Recently,
the significant advancements achieved in deep neural networks
across various fields have prompted the adoption of learning-based
algorithms for scalp hair modeling. Early work by [Zhou et al. 2018]
exploits an encoder-decoder network to infer 3D hair strands di-
rectly from a 2D orientation map of the segmented hair region.
Saito et al. [2018] trained a variational autoencoder to represent 3D
hairstyles as a latent space of hair volume and utilized the latent
code to synthesize 3D hair from a single-view image. Later work
by [Zhang and Zheng 2019] introduces a generative adversarial
network with 3D convolutional layers to recover the 3D orientation
field of hair strands. Furthermore, Yang et al. [2019] investigated
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Fig. 2. The pipeline of eyebrow modeling from single-view images. Given a single-view image, our method reconstructs a fiber-level 3D eyebrow. We first
prepare the intermediate data, then feed them into RootFinder , OriPredictor and FiberEnder to generate 3D eyebrow roots R, 3D orientation function D and
ending function L. Following the eyebrow synthesis, we finally obtain the fiber-level eyebrow model.

dynamic hair modeling from monocular video streams and inferred
3D spatial and temporal features of moving hairs via neural net-
works. While the aforementioned methods are capable of capturing
the overall shape of hairs and predominant strand orientation, their
explicit hair representation (e.g. orientation voxels) tends to recon-
struct over-smoothed 3D hair geometry. To overcome this limitation,
concurrent works by [Wu et al. 2022; Zheng et al. 2023] leverage
implicit representation and pixel-aligned features to represent in-
tricate hair geometry. Despite a large body of research devoted to
learning-based scalp hair modeling, the application of these meth-
ods to eyebrow reconstruction is not adequate due to the notable
differences in the root distributions and growing rules between scalp
hair and eyebrows.

3 OVERVIEW
This section contains a system overview for the single-view 3D
reconstruction of a fiber-level eyebrow model. We first give the
definition of this problem, then briefly introduce our pipeline.

3.1 Problem Definition
Given a single input image I, we need to recover the corresponding
fiber-level 3D eyebrow model E growing on the target 3D head H.

3D eyebrow representation. A fiber-level 3D eyebrow model E
is actually a set of 3D curves growing from the roots to the tips.
Following state-of-the-art methods of scalp hair modeling [Wu et al.
2022; Zheng et al. 2023], we model E via an implicit orientation field.
Once we obtain the eyebrow roots and lengths, fiber curves can
be easily grown step-by-step from this field. Thus, we define the
fiber-level 3D eyebrow model as

E = 𝑆𝑦𝑛(R,D, L), (1)

where 𝑆𝑦𝑛(·) stands for the algorithm of eyebrow synthesis, i.e. the
growing procedure. R, D and L represent the eyebrow roots, im-
plicit 3D orientation function and the ending function, respectively.
Specifically, the eyebrow roots R = {𝑟𝑖 , 0 ≤ 𝑖 < 𝑛} is a 3D point
cloud attached to the surface of the brow bone region on the target
head H, with a dimension of 𝑛 × 3. The implicit orientation function
Dmaps a 3D query point 𝑝 to a unit growing vector 𝑑 , which can be

formulated as 𝑑 = D(𝑝). The ending function L describes whether a
growing eyebrow fiber S should be stopped:

L(S) =
{

0, if S should be stopped
1, otherwise

. (2)

3.2 Pipeline
Fig. 2 shows the pipeline of our learning-based framework (EMS) for
single-view eyebrow modeling. Our method takes a single portrait
image as input and outputs a fiber-level 3D eyebrow model with
fine details. Given the lack of a 3D eyebrow dataset, we create a
high-quality synthetic 3D eyebrow dataset named EBStore (Sec. 4), to
facilitate the data-driven approach. Based on EBStore, EMS achieves
state-of-the-art performance on single-view 3D eyebrow modeling.

Starting from a cropped portrait image of the eyebrow region, we
first prepare the intermediate data, including the 3D head, eyebrow
matting, and the orientation map (Sec. 5.1). Following the definition
in Eq. (1), we break down 3D eyebrow modeling into three steps, i.e.
localizing fiber root (Sec. 5.2), predicting 3D orientation (Sec. 5.3)
and determining fiber length (Sec. 5.4). After the eyebrow synthesis
(Sec. 5.5), we finally obtain a fiber-level 3D eyebrow model. It should
be noted that, as there is a non-negligible domain gap between real
images and synthetic images, we follow [Kuang et al. 2022; Wu
et al. 2022; Zhou et al. 2018] to adopt the 2D orientation map as the
intermediate representation rather than input the image directly to
the sub-modules.

4 DATASET CONSTRUCTION
Unlike the existing facial hair datasets [Dataset 2022; Wang et al.
2022; Xiao et al. 2021] with only 2D detection and alpha matting
annotations, we construct the first 3D fiber-level synthetic eyebrow
dataset spanning a wide range of eyebrow geometries and differ-
ent local details based on FaceScape [Yang et al. 2020b]. FaceScape
obtained data from a dense multi-view stereo with DSLR cameras,
which provides high-quality 3D face models. These face models are
registered to the template head mesh with uniform topology and
located within a unified space, which facilitates the rough alignment
of 3D eyebrows attached to various brow bone geometries. Besides,
68 DSLR cameras of the multi-view system are able to capture 4K
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Fig. 3. EBStore dataset gallery with diverse 3D eyebrow models.

images, ensuring clear visibility of the eyebrows in frontal views.
We carefully selected 197 males and 203 females from the large-scale
FaceScape dataset to ensure gender balance in building the EBStore
dataset. The subjects in EBStore range from 16 to 70 years old with
diverse eyebrow styles. These 400 3D eyebrow models are manually
created by artists using particle edit mode in Blender [Community
2018], guided by both the high-resolution texture map of the eye-
brow region and a front-facing image of the individual. In general,
a skillful artist typically needs to take around 1-2 days to create
a high-quality fiber-level eyebrow model that closely matches the
given image. Each eyebrow fiber in EBStore is comprised of 20 con-
nected 3D points for further processing. Fig. 3 shows a gallery of
our data.

5 METHODOLOGY
In this section, we describe the detailed designs of our approach.

5.1 Preparation
The initial stage of the preparation for our system is to detect eye-
brow regions from single-view portrait images. We use the 3DDFA
method [Guo et al. 2020] to detect the face region of the input image
and then feed the face image to the pre-trained face parsing model
on CelebAMask-HQ [Lee et al. 2020]. Then we crop the eyebrow
region from the face parsing results and adopt the eyebrow matting
method [Wang et al. 2022] to get the mask of eyebrow fibers. Next,
we compute the real orientation map O for the eyebrow fiber map
with the mask using the method of [Luo et al. 2012], which uses a
bank of rotated filters to detect the dominant orientation at each
pixel. The orientation map O is then enhanced with 3 passes of iter-
ative refinement for a better signal-to-noise ratio proposed by [Chai
et al. 2012]. As for acquiring the human head H, we get a detailed
3D human face from a single-view 3D face prediction method [Yang
et al. 2020b]. By utilizing the mapping between the 2D image and
3D face mesh, we can derive a pseudo-camera pose for eyebrow
projection. However, it should be noted that the predicted 3D face
mesh may not be aligned with our training head space. To solve
this, we align the predicted face mesh with the average head of
FaceScape by optimizing its translation, rotation and scale.

5.2 Localization of Fiber Root
Given the eyebrow orientation map O as input, we aim to find
the 3D roots R of the eyebrow fibers. As previously discussed, di-
rectly detecting eyebrow roots is a tough challenge due to severe
self-occlusion from visual perception. To address this issue, we pro-
posed a density-based eyebrow root localization method, named
RootFinder .

In our approach, the root distribution estimation of the eyebrow
is viewed as the problem of density map prediction, which involves
the modeling of the spatial distribution of root points as a contin-
uous function over the image domain. The high-level idea of our
approach is quite straightforward: given an eyebrow orientation
mapO, our goal is to recover a density function P that approximates
the real distribution of each fiber root pixel in this image. Our notion
of a density function P can be interpreted as the response of a given
pixel representing a root point. To prepare the training data, we
employ the pre-processed orientation maps as input and utilize their
corresponding cameras to project 3D ground-truth root points to the
2D image coordinates. Motivated by the previous crowd counting
methods [Liu et al. 2019; Ranjan et al. 2021], we generate the ground-
truth density map, 𝑃∗ ∈ R𝐻×𝑊 , from the 2D root coordinates by
using a Gaussian kernel with adaptive window size. Inspired by
the encoder-decoder crowd counting framework [Jiang et al. 2019;
Yan et al. 2019], we find that simply using a U-Net based archi-
tecture [Ronneberger et al. 2015] can already achieve satisfactory
results. Following the standard settings, we use a pixel-wise MSE
loss against 𝑃∗ , which is formulated as:

𝐿𝑑𝑒𝑛 =
1
𝑁

𝑁∑︁
𝑖=1

| |𝑃 (𝑂𝑖 ) − 𝑃∗𝑖 | |
2, (3)

where 𝑃 (𝑂𝑖 ) is the predicted density map.𝑂𝑖 is the 𝑖𝑡ℎ input of total
𝑁 orientation maps, and 𝑃∗

𝑖
is the ground-truth density map.

Since predicting the distribution of eyebrow roots involves a
rough estimation of their coordinates, the output density map at
the patch level cannot be directly used for accurate pixel-level root
localization. Thus we employ DBSCAN [Ester et al. 1996], a density-
based clustering algorithm, to compute the number of valid fiber root
clusters. Once we determine the number of clusters using DBSCAN,
we apply the K-Means [Hartigan et al. 1979] clustering method
to calculate the cluster center, which corresponds to the 2D root
points. Next, our goal is to derive the 3D positions of the acquired
2D root coordinates. However, directly lifting the 2D root points
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(a) Input orientation map (b) Predict density map

(c) 3D root points (d) GT density map

Fig. 4. Localization of the 3D root points by RootFinder . (a) input orientation
map. (b) predict density map. (c) 3D root point cloud by clustering and lifting.
(d) ground-truth density map.

to 3D space is an ill-posed problem since inverse projection leads
to depth ambiguity. To overcome this issue, we first sample dense
3D points on the brow bone surface region of the face mesh and
project them onto the image. For each extracted 2D root, we find its
nearest projected 2D sampling points and take the corresponding
3D sampling point as the 3D root 𝑟𝑖 . Relative maps mentioned in
this subsection are illustrated in Fig. 4.

5.3 Prediction of 3D Orientation
To recover the growing direction of fiber S, OriPredictor is con-
structed to predict a unit vector for every point on S under the
guidance of the given image I. In this task, the pre-processed 2D
orientation map O from I is used to calculate the feature map 𝐹 ,
and the 3D point 𝑝 is projected to 2D image coordinate by camera
projection 𝜋 (·) to exact pixel-aligned local image feature 𝐹 (𝜋 (𝑝)).
In addition, to represent high-frequency variation in eyebrow fiber
geometry, positional encoding Φ(𝑝) is added to transform coordi-
nates to higher dimensional information [Mildenhall et al. 2021].
Then we can define the implicit orientation function D for arbitrary
point 𝑝 in 3D space as

D(𝐹 (𝜋 (𝑝)),Φ(𝑝)) = 𝑑 : 𝑑 ∈ R3 . (4)

In our implementation, we apply an Hourglass filter to obtain
feature maps from input orientation maps. Positional encoding will
be concatenated with the image feature as a joint local feature. MLPs
are designed as the decoder to output a unit 3D vector 𝑑 and 𝐿1 loss
is chosen to measure the error between the predicted direction 𝑑

and corresponding ground-truth direction 𝑑∗ during training.

5.4 Determination of Fiber Length
Theoretically, a growing eyebrow fiber S with 𝑞 points can be dis-
cretized as a 3D points sequence {𝑝0, 𝑝1, ..., 𝑝𝑞−1}. FiberEnder is
designed to determine whether S is supposed to be stopped by
emitting an ending signal, which can be formulated into a binary
classification problem.
It is trivial to think that one can tell the ending point of an eye-

brow fiber on a close-up photo based on its surrounding pixels,
so the local image feature should be considered. We also leverage
3D information by encoding fiber point coordinates into the local
feature list since images may not be able to exhibit useful details
in the region of self-occlusion. Hence, the concatenated growing

feature 𝐺 for a single 3D point 𝑝 can be given by

𝐺 (𝑝) = {𝐹 (𝜋 (𝑝)),Φ(𝑝)}, (5)

where 𝜋 (·) is the camera projection. 𝐹 (𝜋 (𝑝)) andΦ(𝑝) are the image
feature and positional feature for 𝑝 , respectively.
However, noticed that features of points along the same fiber

have a strong correlation, we cannot treat a node as an isolated
identity, since the prediction of whether S will be stopped at 𝑝𝑞−1 is
highly dependent on the features of its predecessor. Therefore, the
ending function L for S can be defined as

L(S) = L({𝑝0, 𝑝1, ..., 𝑝𝑞−1})
= 𝐶 (𝐺 (𝑝0),𝐺 (𝑝1), ...,𝐺 (𝑝𝑞−1))

=

{0, if S should be stopped at 𝑝𝑞−1
1, otherwise , (6)

where 𝐶 is a composite function taking the indefinite number of
point feature 𝐺 as ordinal inputs.
In practice, consistent with the prediction of the 3D orientation

field, the Hourglass filter is employed to exact 2D image local fea-
tures from input orientation maps. For organizing a point feature
series with an unfixed length into a latent vector, we borrow knowl-
edge from [Schuster and Paliwal 1997] and introduce a stacked RNN
based encoder. The iteration begins with the initial zero hidden code
ℎ0 and it will be passed to a GRU cell [Cho et al. 2014] together
with a new growing feature 𝐺 (𝑝𝑖 ), 0 ≤ 𝑖 < 𝑞 for total 𝑞 times. Then
the final hidden code ℎ𝑞 is passed to a MLP classifier to output a
probability that S will continue growing. It is worth mentioning
that the direction of fiber growth is not reversible, thus we use a
monodirectional stacked RNN rather than a bidirectional one. The
whole structure of FiberEnder is illustrated in Fig. 5.

Based on EBStore, we annotate all fibers and their sub-sequences
with binary labels: the full sequence with the tip point is labeled to
𝑙 = 0 as the negative sample 𝑆− , indicating the fiber will be stopped;
the sub-sequences are labeled to 𝑙 = 1 as the positive sample 𝑆+,
suggesting the fiber will continue growing. In the training phase, we
construct a data pair of {𝑆−, 𝑆+} for each fiber in every epoch, where
the positive sample is randomly picked from all its sub-sequences.
Binary Cross Entropy (BCE) is chosen to calculate the loss between
predicted normalized probability 𝐶 (𝑆) and labels:

𝐿𝐵𝐶𝐸 = −(𝑙 · 𝑙𝑜𝑔(𝐶 (𝑆)) + (1 − 𝑙) · 𝑙𝑜𝑔(1 −𝐶 (𝑆))) . (7)

5.5 Synthesis of Fiber-level Eyebrow
After {R,D, L} has been well-defined, the subsection is aimed to
illustrate how to generate a fiber-level eyebrow E. The whole grow-
ing process can be generalized as 𝑆𝑦𝑛(R,D, L): Given 𝑛 detected
root points R = {𝑟𝑖 , 0 ≤ 𝑖 < 𝑛}, 𝑛 fibers will be generated by
point-wise querying from 𝑟𝑖 . For the 𝑗𝑡ℎ node 𝑝𝑖, 𝑗 on fiber S𝑖 , the
unit growing direction D(𝑝𝑖, 𝑗 ) = 𝑑𝑖, 𝑗 ∈ R3 and a ending signal
L(S𝑖 ) = L({𝑝𝑖,0, 𝑝𝑖,1, ..., 𝑝𝑖, 𝑗 }) = 𝑙𝑖, 𝑗 ∈ {0, 1}. S𝑖 will keep growing
as the direction of 𝑑𝑖, 𝑗 with a fixed step 𝑠 if 𝑙𝑖, 𝑗 = 1. Otherwise, S𝑖
will be stopped at point 𝑝𝑖, 𝑗 . The above synthesis procedure can be
presented in Fig. 6. The step-wise iteration can also be summarized
into an algorithm in Tab. 1 (In practice, it can be conducted in batch
for all fibers of an eyebrow to achieve computational efficiency).
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GRU GRU GRU MLP

ℎ0 ℎ𝑞

𝑝0
𝑝1

𝑝𝑞−1
Image Feature 𝐹(𝜋(𝑝))

Hidden Code  ℎ

Predicted Signal 𝑙

Positional Encoding Φ(𝑝)

𝑙

𝐺(𝑝0) 𝐺(𝑝1) 𝐺(𝑝q−1)

Fig. 5. The architecture of the proposed pixel-aligned stacked RNN-based FiberEnder . Radius change along a fiber has no particular meaning, only for intuitive
illustration.

Table 1. Growing algorithm of the fiber-level eyebrow.

ALGORITHM: Fiber-level Eyebrow Synthesis

Input: root points R, 3D orientation function D, ending function L
Output: fiber-level eyebrow E
for 𝑖 = 0 : 𝑛 do

build the empty point list S𝑖 of the 𝑖𝑡ℎ fiber
𝑝𝑖,0 = 𝑟𝑖
S𝑖 = {S𝑖 , 𝑝𝑖,0}
while 𝑗 = 0 : ∞ do

𝑑𝑖, 𝑗 = D(𝑝𝑖, 𝑗 )
𝑙𝑖, 𝑗 = L(S𝑖 )
if 𝑙𝑖, 𝑗 = 0: break
𝑝𝑖, 𝑗+1 = 𝑝𝑖, 𝑗 + 𝑠𝑑𝑖, 𝑗
S𝑖 = {S𝑖 , 𝑝𝑖, 𝑗+1}

end
end
E = {S0, S1, ..., S𝑛−1}

In addition, considering that the inevitable noises of filter-based
orientation maps from real images cause the vibration of the 3D
orientation field prediction, we also modify the predicted growing
direction 𝑑 to ensure smoothness and alleviate abnormal warping of
fibers. Following [Shen et al. 2020], the growing direction is set to the
mean value of the current and the last node if their angle difference
is larger than a particular threshold 𝜃 . However, the eyebrow fibers
tend to exhibit less drastic angle variation between two adjacent
points compared with hair strands, thus the given threshold in hair
modeling is no more suitable for eyebrow modeling. Based on our
experimental findings, we set 𝜃 to be 30◦.

6 EXPERIMENTS

6.1 Dataset
Our experiments are based on 400 synthetic eyebrow models in
EBStore. For each 3D model, we employ flipping w.r.t the reflection
symmetry plane of the head model to augment the 3D eyebrow

Fiber

𝑝1

𝑝2

𝑝3

𝑝4

Ending

𝑳 𝑺{𝑗≤0} → 𝑔𝑟𝑜𝑤

𝑳 𝑺{𝑗≤1} → 𝑔𝑟𝑜𝑤

𝑳 𝑺{𝑗≤4} → 𝑒𝑛𝑑 

𝑳 𝑺{𝑗≤2} → 𝑔𝑟𝑜𝑤

𝑳 𝑺{𝑗≤3} → 𝑔𝑟𝑜𝑤

𝑝0

Growing

+ ҧ𝑠 ∙ 𝑫(𝑝3)

+ ҧ𝑠 ∙ 𝑫(𝑝2)

+ ҧ𝑠 ∙ 𝑫(𝑝1)

+ ҧ𝑠 ∙ 𝑫(𝑝0)

/

Fig. 6. Synthesis of an eyebrow fiber. Starting from a root point in R, an
eyebrow fiber is grown by querying the 3D orientation function D(𝑝 ) and
the ending function L(𝑆 ) step-by-step. Radius change along a fiber has no
particular meaning, only for intuitive illustration.

dataset and randomly select 3 views by moving the camera position
in spherical coordinates with a fixed radius, azimuthal angle in ±10◦
and polar angle in ±15◦. The camera ray is ensured to pass through
the center point of the 3D eyebrow model. For each view of an
eyebrow model, we render an orientation map. In total, we have
2202 images for training and 198 images for testing. Based on the
observation that hair fibers may grow between the left and right
eyebrow in some eyebrow types, we process the left and right parts
simultaneously in all experiments instead of separating them for
individual processing.

6.2 Metrics
In this subsection, we introduce fair metrics for the evaluation of
3D eyebrow modeling. We design several metrics to evaluate root
localization and fiber length determination, respectively. Also, we
use 3D metrics to assess the overall reconstruction performance of
the whole system.

Root localization metrics. We first compute the nearest density er-
ror (𝑁𝐷𝐸) and a density-aware chamfer distance (𝐷𝐶𝐷) to evaluate
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the localization of 3D eyebrow roots. The nearest density error is
based on the density 𝑑𝑒𝑛(𝑟,R) of root 𝑟 against the root point cloud
R, which is calculated by counting the number of neighbors within
a radius 𝜑 . Then the nearest density errors from predicted roots R

′

to the ground-truth R∗ can be defined as

𝑁𝐷𝐸
′
=

1��R′ �� ∑︁
𝑥∈R′

���𝑑𝑒𝑛(𝑥,R′
) − 𝑑𝑒𝑛(𝑥∗,R∗)

��� , (8)

where 𝑥∗ ∈ 𝑅∗ is the nearest root of 𝑥 ∈ 𝑅
′
. Based on the density

errors, we also compute a density-aware chamfer distance from
predicted roots R

′
to the ground-truth R∗

𝐷𝐶𝐷
′
=

1��R′ �� ∑︁
𝑥∈R′

���𝑑𝑒𝑛(𝑥,R′
) − 𝑑𝑒𝑛(𝑥∗,R∗) + 1

��� · ∥𝑥 − 𝑥∗∥2 . (9)

The reversed 𝑁𝐷𝐸∗ and 𝐷𝐶𝐷∗ can be calculated in the same way.
We take their arithmetic means 𝑁𝐷𝐸 = (𝑁𝐷𝐸

′ + 𝑁𝐷𝐸∗)/2 and
𝐷𝐶𝐷 = (𝐷𝐶𝐷 ′ + 𝐷𝐶𝐷∗)/2 as the bi-directional metrics to evaluate
the root localization.

Fiber length determination metrics. We define the Mean Length
Error (𝑀𝐿𝐸) for evaluating the average loss per fiber for 𝑘 synthetic
3D eyebrow, which can be calculated as

𝑀𝐿𝐸 =

∑𝑘
𝑖=1

∑𝑛𝑖
𝑛=1 𝑠 |𝑙𝑖, 𝑗 − 𝑙∗

𝑖, 𝑗
|∑𝑘

𝑖=1 𝑛𝑖
, (10)

where 𝑛𝑖 is the total number of fibers of the 𝑖𝑡ℎ (1 ≤ 𝑖 ≤ 𝑘) eyebrow,
𝑙𝑖, 𝑗 represents the predicted length labels for its 𝑗𝑡ℎ (1 ≤ 𝑗 ≤ 𝑛𝑖 )
fiber, and 𝑙∗

𝑖, 𝑗
stands for its corresponding ground-truth label. 𝑠 is

the pre-determined fixed step.

3D fiber-level eyebrow reconstruction metrics. For the 3D metrics,
we use the IoU of meshes converted from reconstructed eyebrows
E
′
and ground-truth eyebrows E∗ via the method in [Zhu and Brid-

son 2005], which is designed to evaluate the overall shape, i.e. the
silhouette of the reconstructed eyebrow model. To further compare
the inside geometry of eyebrow growing, we evaluate the fiber-level
𝐿2 distance of 3D orientation, which is shorted as 𝐹𝐷𝑂 . For the
𝐹𝐷𝑂

′
from E

′
to E∗, we first find the nearest fiber S∗ ∈ E∗ for each

fiber S ∈ E
′
according to the distance of their roots, then compute

𝐹𝐷𝑂
′
as

𝐹𝐷𝑂
′
=

1��E′ �� ∑︁
S∈E′

∑︁
𝑝∈S,𝑞∈S∗

∥D(𝑝𝑖 ) − D(𝑞𝑖 )∥2, (11)

where D(𝑝𝑖 ) and D(𝑞𝑖 ) are the unit growing directions of the 𝑖𝑡ℎ
points 𝑝𝑖 and𝑞𝑖 along S and S∗, respectively.We use the bi-directional
error 𝐹𝐷𝑂 = (𝐹𝐷𝑂 ′ + 𝐹𝐷𝑂∗)/2 as the metric.

6.3 Evaluations
This subsection is to evaluate our key modules RootFinder ,OriPredic-
tor and FiberEnder on the synthetic test set by both quantitative and
qualitative results.

Evaluation of eyebrow roots. Firstly, we analyze the performances
of RootFinder by calculating𝐷𝐶𝐷 and𝑁𝐷𝐸.We compare our RootFinder
with an intuitive method which first conducts the uniformly random
sampling of 2D roots on 2D matting masks of eyebrow images, then

lifts 2D roots to 3D using the same method in Sec. 5.2. From Tab. 2,
it is clear to see a significant reduction of two metrics with different
neighborhood radius 𝜑 . In our setting, the target face is normalized
to [−1, 1] in width. Thus, we choose 𝜑 as 0.04, 0.02, and 0.01 for
comprehensive evaluations. Visual comparisons are illustrated by
predicted 3D roots with the colorization of 𝐷𝐶𝐷

′
(𝜑 = 0.02) and

extracted 2D roots with the background of ground-truth eyebrows
(see Fig. 7). The most distinguished problem of random sampling
is that randomly sampled roots cannot cover the eyebrow shape
with correct sparseness. Almost all selected roots fall in dense pixel
regions and barely on sparse regions, such as the tails and the fibers
between two eyebrows. In contrast, RootFinder maintains the over-
all boundary very well, while also preserving the local distribution
suggested by the input image.

Table 2. Quantitative comparisons for the Localization of fiber roots.

Method 𝐷𝐶𝐷 𝑁𝐷𝐸 𝐷𝐶𝐷 𝑁𝐷𝐸 𝐷𝐶𝐷 𝑁𝐷𝐸

(𝜑=0.04) (𝜑=0.02) (𝜑=0.01)
Random 0.2147 21.57 0.0811 7.503 0.03267 2.506
RootFinder 0.1261 15.13 0.04811 5.078 0.02222 1.735

Evaluation of 3D orientation. We follow [Wu et al. 2022; Zheng
et al. 2023] to use 𝐿2 error to evaluate the orientation field. The 𝐿2
error of our method is 0.0951. From Fig. 9, the results of our method
have a much better alignment with input eyebrow images in fiber
growing direction than previous ruled-based approaches [Herrera
et al. 2010; Rotger et al. 2019], indicating that the predicted orienta-
tion field is capable of describing how the eyebrow should grow in
the aforementioned implicit manner.

Evaluation of fiber length. To evaluate the effectiveness of our
method on the determination of fiber length, we design experiments
with five settings: ending fiber growing with the mean length of all
fibers in EBStore (baseline), cutting using the ground-truth contour
mesh, our method without recurrent module, our method without
positional encoding Φ(𝑝), and our full model FiberEnder . As for
the mesh-cutting method, we follow [Hu et al. 2017] to first ex-
tract watertight ground-truth eyebrow meshes from ground-truth
eyebrows using the method in [Zhu and Bridson 2005]. Given the
ground-truth mesh, we can easily stop the growth of a fiber if it
grows out of the boundary of the mesh. The quantitative results
are displayed in Tab. 3. Our full model has a 45.77% reduction in
𝑀𝐿𝐸 compared with the intuitive approach by setting all fibers into
the mean length and 60.16% less than the mesh-cutting method,
even if it uses ground-truth meshes rather than predicted meshes.
Moreover, ablation of the recurrent architecture and positional infor-
mation does affect the results to a certain extent, which can provide
evidence to our assumption that historical growing features help
in the learning of length control of eyebrow fibers. Visual results
colorized by 𝑀𝐿𝐸 for each fiber in Fig. 8, revealing more obvious
differences between these approaches. Growing with mean length
tends to preserve overall characteristics but lose length details in
the region that is out of distribution. Mesh-cutting can only cut
off fibers correctly which should stop near the boundary of the
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(b) RootFinder(a) Random Sampling (c) Ground Truth

0                        0.1

Fig. 7. Qualitative comparisons for the localization of fiber root. Every row presents the 3D root points and their corresponding projection in 2D of the same
identity. From left to right: (a) Random sampling in eyebrow matting mask region, (b) RootFinder , (c) Ground-truth. Each 3D root point is colorized according
to 𝐷𝐶𝐷

′
(𝜑 = 0.02).

mesh but fails to work on fibers that should stop inside the mesh,
especially in the middle region of the eyebrows. Moreover, results
will be even worse if the predicted coarse meshes are used instead
of the ground-truth ones. To sum up, FiberEnder outperforms other
methods to much extent.

Table 3. Quantitative comparisons for the determination of fiber length.

Method 𝑀𝐿𝐸 (×10−2) ↓
End with mean length (Baseline) 2.9926
Cut by ground-truth mesh 4.0739
FiberEnder w/o recurrent module 4.2130
FiberEnder w/o PE 1.8070 (-39.62%)
FiberEnder 1.6229 (-45.77%)

6.4 Comparisons
This subsection is to compare EMS with existing related approaches
by quantitative and qualitative results.

Comparison with rule-based facial hair reconstruction. Since there
have been no existing learning-based attempts for 3D eyebrow mod-
eling tasks, we implement rule-based methods in [Herrera et al.

2010] and [Rotger et al. 2019] to make comparisons. On the testing
set of EBStore, we report IoU and 𝐹𝐷𝑂 for reference in Tab. 4. With
the help of RootFinder , OriPredictor and FiberEnder , EMS outper-
forms the traditional methods in both metrics. We also collect some
in-the-wild photos with an iPhone Pro Max 13 in our local area. As
shown in Fig. 9, our method achieves state-of-the-art performance.
Compared with previous methods, our reconstructed eyebrows have
a more similar shape matching with original images and the fiber
growing pattern is more natural, thanks to the intrinsic advantages
of the data-driven approach by introducing 3D priors to single view
reconstruction. Results in Fig. 9 prove that our method trained on
synthetic data also works for the input of real images with a non-
negligible domain gap. However, we have to admit that, due to the
lack of diversity in FaceScape [Yang et al. 2020b] (most identities
are Asian), our dataset EBStore may fail to cover all properties such
as eyebrow types, skin tones, and fiber colors despite our efforts
to increase the variety of EBStore. Although this limitation may
have a certain negative impact on the generalization capability of
our method, the reconstructed results tested on the online public
images [Pexels 2021] with different skin tones and fiber colors still
look fine (Fig. 10).
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Fig. 8. Qualitative comparisons for the determination of fiber length. From top to bottom, we show the reconstructed 3D eyebrow models of ending with
mean length, cutting by ground-truth mesh, FiberEnder w/o PE and FiberEnder , respectively. Every column shows the results of the same identity. Each fiber is
colorized according to MLE (×10−2).

It is worth mentioning that the accuracy of eyebrow reconstruc-
tion, especially 3D root prediction, is partially based on an off-the-
shelf single-view face reconstruction method [Yang et al. 2020b].
Even when only coarse face models are obtained sometimes in in-
the-wild examples, the quality of eyebrow reconstruction is still
visually satisfactory. The reason may be that our method mainly
relies more on the projected growing hints.

Comparison with multi-view facial hair reconstruction. To further
illustrate the effectiveness of our single-view reconstruction frame-
work, we compare EMS with a multi-view method [Beeler et al.
2012] by taking only a front-view image as input. From the result
in Fig. 11, although EMS may not produce highly detailed results
like multi-view capture systems, it has already depicted the overall
appearance of a comparable level with a more handy setting.

Comparison with single-view scalp hair reconstruction. To make
the experiments more comprehensive, we compare our method
with state-of-the-art single-view scalp hair modeling methods [Wu
et al. 2022; Zheng et al. 2023], which are usually designed to grow
fibers from dense pre-sampled roots on the scalp according to an
implicit orientation field, and cut using predicted coarse meshes.
For convenience, we compare EMS with cutting by ground-truth
meshes, which is an even more tolerant setting. IoU and 𝐷𝐶𝐷 are
reported in Tab. 4, where EMS is better thanks to module design for
eyebrow characteristics especially.

Table 4. Quantitative comparisons with existing related methods.

Method IoU ↑ 𝐹𝐷𝑂 ↓
[Herrera et al. 2010] 0.5095 0.9752
[Rotger et al. 2019] 0.5126 0.9848
Scalp hair SVR 0.6160 0.2758
EMS 0.8756 0.2480

6.5 Ablation Study
To better demonstrate the necessity of the designing for eachmodule,
the whole EMS system is ablated into three settings: growing with
random roots and a mean length (baseline), baseline with only
FiberEnder and baseline with only RootFinder . They are all compared
with each other and our full model by the metrics of IoU and 𝐹𝐷𝑂

against the ground truth on the testing set.

Table 5. Quantitative comparisons for the ablation study.

Method IoU ↑ 𝐹𝐷𝑂 ↓
Baseline 0.5665 0.2425
Baseline + RootFinder 0.8440 0.2655
Baseline + FiberEnder 0.5918 0.2338
Full 0.8756 0.2480
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Fig. 9. Qualitative comparisons for in-the-wild real images. From top to bottom, we show the reconstructed 3D eyebrow models of previous methods [Herrera
et al. 2010], [Rotger et al. 2019], and EMS, respectively. The different colors used have no particular meaning, just for fruitful illustration of different examples.

From the comparisons of IoU in Tab. 5 and Fig. 12, we can tell that
RootFinder exerts a significant effect on the recovery of the overall
shape of 3D eyebrows. Using randomly sampled roots, the tails
and the region between two eyebrows cannot be covered very well.
Furthermore, FiberEnder also brings some bonus on both metrics,
that is, controlling the length of every fiber not only preserves a
better overall volume but also modifies wrong orientation by ending
inappropriate growing. However, with the huge improvement of
the IoU brought by RootFinder , a small perturbation in the accuracy
of orientation is acceptable.

6.6 User Study
Last but not least, we make a user study on three methods in Fig. 9,
with a total of 56 users involved. In the questionnaire, they are pro-
vided with 8 randomly chosen reconstructed examples by different
approaches and asked to select one result that matches the given
close-up photos best from three randomly sorted options. 78.57%
of answers vote for EMS as the best, while 13.39% and 8.04% vote
for the methods of [Herrera et al. 2010] and [Rotger et al. 2019],
respectively. It is supportive evidence for the superiority of our
method.
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Fig. 10. Qualitative comparisons for diverse skin tones and fiber colors. We show the reconstructed 3D eyebrow models and their corresponding original
images. The different colors used have no particular meaning, just for fruitful illustration of different examples.
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Fig. 11. Qualitative comparisons with the multi-view method. From top
to bottom, we show the reconstructed 3D eyebrow models of [Beeler et al.
2012], EMS, and its corresponding real image.

7 CONCLUSION AND LIMITATION
To conclude, in this work, we propose the first learning-based sys-
tem for fiber-level 3D eyebrow reconstruction from single-view
images. EMS consists of three components RootFinder , OriPredictor

and FiberEnder , aiming to tackle the key challenges of eyebrow mod-
eling. We also contribute the first high-quality 3D synthetic eyebrow
dataset EBStore, which we use to facilitate the whole framework
and introduce objective metrics to assess the performance of each
module and overall reconstruction geometries. Experiments with
visual and numerical results on both synthetic data and in-the-wild
real images show the effectiveness of our system.
Limitation. Although EMS provides realistic reconstructed re-

sults on a wide range of data, it may fail in some cases shown
in Fig. 14: continuous dark eyebrow region of make-up or eyebrow
tattoos (as the first row), occlusion of eyebrows by hair strands
on the forehead (as the second row), and relatively slight contrast
between skin tone and hair color (e.g., white eyebrows on light skin,
as the third row). These artifacts are mainly caused by the eyebrow
matting module [Wang et al. 2022]. In these cases, the masks we
obtain may be blurry or have wrong detection of eyebrow fibers,
which will further lead to low-quality orientation maps, wrong dis-
tribution of eyebrow roots and inaccuracy of orientation and length
prediction. We believe that if we can find a more robust matting
method or ease the dependence on it, our method is supposed to
work better.

Besides, the generalization ability of our model is limited to eye-
brows and may fail for other types of facial hairs, since prior knowl-
edge learned from EBStore may be unsuitable to represent different
growing rules. Another thing that needs to be noted is that our
current model is trained using synthetic data only which takes the
orientation map as the intermediate input. This makes the issue of
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Fig. 12. Qualitative ablation study results. From top to bottom, we show the reconstructed 3D eyebrow models of the baseline, baseline with FiberEnder only,
baseline with RootFinder only, our full model EMS and ground truth, respectively. The different colors used have no particular meaning, just for fruitful
illustration of different examples.

13.39%

8.04%

78.57%

[Herrera et al . 2010] [Rotger et al . 2019] EMS

Fig. 13. Statistics of user study. The pie chart displays the percentage of
votes for the best eyebrow models among three methods represented by
different colors.

domain gap still exist since the orientation maps extracted from real-
world images are usually noisy. We leave this as a future research
direction.

3D eyebrowsReal images Matting results

Fig. 14. Failure cases. From left to right, we show the real images, cor-
responding matting results and reconstructed 3D eyebrows.The different
colors used have no particular meaning, just for fruitful illustration of dif-
ferent examples.
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A IMPLEMENTATION DETAILS
In this section, we describe the details of our networks and training
settings in RootFinder , OriPredictor and FiberEnder experiments.

RootFinder. We employ the U-Net [Ronneberger et al. 2015] to
predict the density map of the input orientation image with the
input size 1500 × 600. Adam optimizer [Kingma and Ba 2014] is
selected for training with the initial learning rate 1𝑒−5 and decayed
by the factor of 0.01. The network is trained with a batch size of 4
for 300 epochs on a single NVIDIA RTX-3090Ti GPU for roughly
two days.

OriPredictor. We use the Hourglass [Newell et al. 2016] network
with four stacks with the input size 1500×600 to extract local image
features for learning the 3D orientation field. The layer sizes of MLP
as the decoder are 277, 1024, 512, 256, 128, 3. Adam optimizer is used
during training and the learning rate is set to 1𝑒−4 and decayed by
the factor of 0.1 in the 60𝑡ℎ epoch. The network is trained with a
batch size of 4 for 100 epochs on a single NVIDIA RTX-3090Ti GPU
for about 15 hours.

FiberEnder. FiberEnder shares similar 2D image features with
OriPredictor , so we load a pre-trained checkpoint to facilitate train-
ing. Despite using only one stack of feature lists for both the training
and testing phases due to limited computing resources, the perfor-
mance of our model demonstrates high accuracy. All fibers of one
eyebrow are passed into the network in a batch. As for the RNN
encoder, the size of hidden code ℎ is 256 × 1. The layer sizes of MLP
as the decoder are 277, 1024, 512, 256, 128, 1. Adam optimizer is
used during training and the learning rate is initialized to 1𝑒−4 at
the beginning and decayed by the factor of 0.1 in the 50𝑡ℎ epoch. It
takes about two days to train for 100 epochs on a single NVIDIA
RTX-3090Ti GPU. It is worthmentioning that the growing directions
inferred byOriPredictor may not exactly align with the curves on the
orientation maps during fiber synthesis. To narrow the domain gap
between synthetic and real, we use fibers predicted by well-trained
OriPredictor growing from ground-truth eyebrow roots to train
FiberEnder . In other words, the labels used for loss calculation are
actually pseudo-labels according to the length of the corresponding
ground-truth fiber in the raw dataset.

B LENGTH STATISTICS OF EBSTORE
Our EBStore dataset enables EMS for training and evaluation. To
better demonstrate data preparation for FiberEnder experiments,
we present length statistics for 400 models in EBStore as Tab. 6. All
fibers created by artists contain an identical quantity of 20 points for
standardization. We take the longest fiber as a reference, calculate
the growing step 𝑠 = 0.014 and regroup all fibers into different
length levels according to 𝑠 , which are labeled as the ground truth
during training. The length statistics for each level are presented
in Tab. 6. The mean length of fiber is 0.0714 (level 5). Since most
fiber length concentrates in the middle levels, using the mean length
to end fiber growing as our baseline for comparison is fair.

C DENSITY MAP VISUALIZATION
We show the intermediate density map results of the RootFinder
module in Fig. 15. The visual results reveal that the predicted density

maps closely match the ground-truth density maps, enabling the
accurate representation of diverse distributions of hair fiber roots.

D MORE VISUALIZATIONS OF EBSTORE DATASET
We provide more visualizations of Facescape [Yang et al. 2020b]
front images and EBStore geometries for males, females and older
people in Fig. 16, Fig. 17 and Fig. 18, respectively. These examples
comprehensively show the diversity in eyebrow density, shape and
growing pattern between different genders and ages.

E MORE VISUAL RESULTS OF ABLATION STUDY
We provide more visual results of the ablation study under four
configurations: baseline of growing with random roots and a mean
length, baseline with only FiberEnder , baseline with only RootFinder ,
and our EMS full model. As illustrated in Fig. 19, EMS outperforms
the ablated settings, with all modules working together. RootFinder
can capture the overall shape of an eyebrow, while FiberEnder mod-
ifies the boundary details.
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Table 6. Length statistics of EBStore with step = 0.014.

Length level 1 2 3 4 5 6 7 8 9 10 11 ≥ 12
Counts 881 4921 39884 143449 68229 50680 37236 22976 11159 5035 2341 2656
Percentages 0.23% 1.26% 10.24% 36.82% 17.51% 13.01% 9.56% 5.90% 2.86% 1.29% 0.60% 0.72%

(a) Input Orientation map (b) Predict density map (c) GT density map

Fig. 15. Qualitative results of the RootFinder density map prediction. From left to right, we show the input orientation map, predict density map, and
ground-truth density map, respectively.

Fig. 16. Male data samples of EBStore Dataset. More visualizations of Facescape front images (left) and corresponding geometries (right) for males.
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Fig. 17. Female data samples of EBStore Dataset. More visualizations of Facescape front images (left) and corresponding 3D geometries (right) for females
without (the first row) and with (the second row) eyebrow make-up.

Fig. 18. Data samples of older individuals in the EBStore Dataset. More visualizations of Facescape front images (left) and corresponding 3D geometries
(right) for old people.
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Fig. 19. Qualitative ablation study results. From top to bottom, we show the reconstructed 3D eyebrow models of the baseline, baseline with FiberEnder only,
baseline with RootFinder only, our full model EMS, and ground truth, respectively. The different colors used have no particular meaning, just for fruitful
illustration of different examples.
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